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Abstract. We prove an extension of the Regularity Lemma with vertex and edge
weights which in principle can be applied for arbitrary graphs. The applications
involve random graphs and a weighted version of the Erdős-Stone theorem. We also
provide means to handle the otherwise uncontrolled exceptional set.

1. Introduction

Let G = G(A,B) be a bipartite graph. For X, Y ⊂ A ∪B let eG(X, Y ) denote the
number of edges with one endpoint in X and the other in Y. Given an ε > 0 we say
that the (A,B)-pair is ε-regular if∣∣∣∣eG(A′, B′)

|A′||B′|
− eG(A,B)

|A||B|

∣∣∣∣ < ε

for every A ⊂ A, |A′| > ε|A| and B′ ⊂ B, |B′| > ε|B|.
This definition plays a crucial role in the celebrated Regularity Lemma of Sze-

merédi, see [12, 13]. The Regularity Lemma is a very powerful tool when applied to
a dense graph. It has found lots of applications in several areas of mathematics and
computer science, for applications in graph theory see e.g. [10]. However, it does not
tell us anything useful when applied for a sparse graph (i.e., a graph on n vertices
having o(n2) edges).

There has been significant interest to find widely applicable versions for sparse
graphs. This turns out to be a very hard task. Kohayakawa [8] proved a sparse
regularity lemma, and with Rödl and  Luczak [9] they applied it for finding arith-
metic progressions of length 3 in dense subsets of a random set. In their sparse
regularity lemma dense graphs are substituted by dense subgraphs of a random (or
quasi-random) graph. Naturally, a new definition of ε-regularity was needed, below
we formulate a slightly different version from theirs:
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Let F (A,B) and G(A,B) be two bipartite graphs such that F ⊂ G. We say that
the (A,B)-pair is ε-regular in F relative to G if∣∣∣∣eF (A′, B′)

eG(A′, B′)
− eF (A,B)

eG(A,B)

∣∣∣∣ < ε

for every A′ ⊂ A,B′ ⊂ B and |A′| > ε|A|, |B′| > ε|B|. It is easy to see that the above
is a generalization of ε-regularity, in the original definition the role of G is played by
the complete bipartite graph KA,B. In this more general definition F can be a rather
sparse graph, it only has to be dense relative to G, that is, e(F )/e(G) should be a
constant.

In this paper we further generalize the notion of quasi-randomness and ε-regularity
by introducing weighted regularity using vertex and edge weights. This enables us to
prove a more general, and perhaps more applicable regularity lemma. Let us remark,
that another notion of regularity is used by Alon et al. [1], later we will discuss
how their work relates to ours. A recent approach by Scott [11] defines regularity
of matrices, and deduces a regularity lemma for graphs via their adjacency matrices.
This approach turns out to be less flexible than the one we choose in the present
paper.

The basic tool is the Strong Structure Theorem of Tao [14], where he simplifies the
proof of the original Regularity Lemma itself and gives new insights, too. Following
his lines became technically feasible to extend regularity to the case when both the
edges and the vertices of a graph are weighted. (Note, that the measures are in close
connection with each other.) We remark that similar ideas might be used to find a
regularity lemma for sparse hypergraphs as well.

The structure of the paper is as follows. First we discuss weighted quasi-randomness
and weighted ε-regularity in the second section. In the third section we prove the
new version of the regularity lemma. Finally, we show some applications in the fourth
section, in particular, we prove a weighted version of the Erdős-Stone theorem.

2. Basic definitions and tools

Throughout the paper we apply the relation “�”: a� b if a is sufficiently smaller
than b. This notation is widely applied in papers using the Regularity Lemma, and
simplifies our notation, too.

Let β > 0 and G = (V,E) be a graph on n vertices. Set δG = e(G)/
(
n
2

)
, this

is the density of G. We define the density of the A,B pair of subsets of V (G) by
δG(A,B) = eG(A,B)/(|A||B|). We say that G is β-quasi-random if it has the following
property: If A,B ⊂ V (G) such that A ∩B = ∅ and |A|, |B| > βn then

|δG − δG(A,B)| < βδG.

That is, the edges of G are distributed “randomly.” In order to formulate our regu-
larity lemma we have to define quasi-randomness in a more general way, that admits
weights on vertices and edges.
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For a function w : S → R+ and A ⊂ S, w(A) is defined by the usual way, that
is, w(A) =

∑
x∈Aw(x). We shall also use the indicator function of the edge set of a

graph H. 1H :
(
V (H)

2

)
→ {0, 1} and 1H(x, y) = 1 iff xy ∈ E(H).

We define the weighted quasi-randomness of a graph G = (V,E) with given weight-
functions µ : V → R+ and ρ :

(
V
2

)
→ R+. For A,B ⊂ V let

ρG(A,B) :=
∑

u∈A,v∈B

1G(u, v)ρ(u, v).

In particular, ρG(u, v) = 1G(u, v)ρ(u, v) for u, v ∈ V. Observe, that the function µ is
an analogon of the vertex counting function on a set, while the function ρ counts the
edges in the unweighted case.

Definition 1. A graph G = (V,E) is weighted β-quasi-random with weight-functions
µ and ρ if for any A,B ⊂ V (G) such that A ∩ B = ∅ and µ(A) ≥ βµ(V ), µ(B) ≥
βµ(V ) we have ∣∣∣∣ ρG(A,B)

µ(A)µ(B)
− ρG(V, V )

µ(V )µ(V )

∣∣∣∣ < β.

Observe that choosing µ ≡ 1 and ρ ≡ 1/δG gives back the first definition of quasi-
randomness. The notion of quasi-randomness readily extends to bipartite (or mul-
tipartite) graphs. In that case the sets A and B are chosen from different classes.
There is another, weaker notion of quasi-randomness, which we will also use.

Definition 2. Let K > 1 be an absolute constant. A graph G = (V,E) is weighted
(K, β)-quasi-random with weight-functions µ and ρ if for any A,B ⊂ V (G) such that
A ∩B = ∅ and µ(A) ≥ βµ(V ), µ(B) ≥ βµ(V ) we have

1

K

ρG(V, V )

µ(V )µ(V )
≤ ρG(A,B)

µ(A)µ(B)
≤ K

ρG(V, V )

µ(V )µ(V )
.

Clearly, if a graph is β-quasi-random and K > max{1 + β/y, 1 + β/(y − β)}, then
it is (K, β)-quasi-random, where y := ρG(V, V )/µ(V )2. Now we need to describe the
weighted version of relative regularity.

Definition 3. Let G and F be graphs, F ⊂ G and assume that G is a (K, β)-
quasi-random with weight functions µ and ρ as defined above. For A,B ⊂ V (G) and
A ∩ B = ∅ the pair (A,B) in F is (µ, ρ)-weighted ε-regular relative to G, or briefly
weighted ε-regular, if ∣∣∣∣ ρF (A′, B′)

µ(A′)µ(B′)
− ρF (A,B)

µ(A)µ(B)

∣∣∣∣ < ε

for every A′ ⊂ A and B′ ⊂ B provided that µ(A′) ≥ εµ(A), µ(B′) ≥ εµ(B). Here

ρF (A,B) =
∑

u∈A,v∈B

1F (u, v)ρ(u, v).
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Remarks. Note that weighted ε-regularity is nothing but the well-known ε-regularity
when G = KA,B and µ ≡ 1 and ρ is chosen to be identically the reciprocal of the
density of G as before. Since 1F (u, v) ≤ 1G(u, v) ≤ 1(u, v) we also have ρF (A,B) ≤
ρG(A,B) ≤ ρ(A,B). Hence, the first inequality of the definition does not refer to G
explicitly, but contains information on it.

Next we define weighted regular partitions.

Definition 4. Let G = (V,E) and F ⊂ G be graphs, and µ and ρ weight functions.
F has a weighted ε-regular partition relative to G if its vertex set V can be partitioned
into `+ 1 clusters W0,W1, . . . ,W` such that

• µ(W0) ≤ εµ(V ),
• |µ(Wi)− µ(Wj)| ≤ maxx∈V {µ(x)} for every 1 ≤ i, j ≤ `,
• all but at most ε`2 of the pairs (Wi,Wj) for

1 ≤ i < j ≤ ` are weighted ε-regular in F relative to G.

In order to show our main result we will use the Strong Structure Theorem of
Tao, that allows a short exposition. In fact we will closely follow his proof for the
Regularity Lemma as discussed in [14].

First we have to introduce some definitions. Let H be a real finite-dimensional
Hilbert space, and let S be a set of basic functions or basic structured vectors of H of
norm at most 1. The function g ∈ H is (M,K)-structured with the positive integers
M,K if one has a decomposition

g =
∑

1≤i≤M

cisi

with si ∈ S and ci ∈ [−K,K] for 1 ≤ i ≤ M. We say that g is β-pseudorandom for
some β > 0 if |〈g, s〉| ≤ β for all s ∈ S. Then we have the following

Theorem 1 (Strong Structure Theorem - T. Tao). Let H and S be as above, let ε > 0,
and let J : Z+ → R+ be an arbitrary function. Let f ∈ H be such that ‖f‖H ≤ 1. Then
we can find an integer M = MJ,ε and a decomposition f = fstr + fpsd + ferr where (i)
fstr is (M,M)-structured, (ii) fpsd is 1/J(M)-pseudorandom, and (iii) ‖ferr‖H ≤ ε.

Note, that the proof of Theorem 1 yields a polynomial algorithm, hence, our regu-
larity lemma has the same complexity.

3. Weighted Regularity Lemma relative to a quasi-random graph G

First we define the Hilbert space H, and S. We generalize Example 2.3 of [14] to
weighted graphs. Let G = (V,E) be a β-quasi-random graph on n vertices with weight
functions µ and ρ. Let H be the

(
n
2

)
-dimensional space of functions g :

(
V
2

)
→ R,

endowed with the inner product

〈g, h〉 =
1(
n
2

) ∑
(u,v)∈(V

2)

g(u, v)h(u, v)ρG(u, v).
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It is useful to normalize the vertex and edge weight functions, we assume that
µ(V ) = n and 〈1, 1〉 = 1. We also assume, that µ(v) = o(|V |) for every v ∈ V.
Observe, that if F ⊂ G then ‖1F‖ ≤ 1. We let S to be the collection of 0,1-valued
functions γA,B for A,B ⊂ V (G), A∩B = ∅, where γA,B(u, v) = 1 if and only if u ∈ A
and v ∈ B. We have the following

Theorem 2 (Weighted Regularity Lemma). Let K > 1 and β, ε ∈ (0, 1), such that
0 < β � ε � 1/K and let L ≥ 1. If G = (V,E) is a weighted (K, β)-quasi-
random graph on n vertices with n sufficiently large depending on ε and L, F ⊂ G,
then F admits a weighted ε-regular partition relative to G into the partition sets
W0,W1, . . . ,W` such that L ≤ ` ≤ Cε,L for some constant Cε,L.

Proof: Let us apply Theorem 1 to the function 1F with parameters η and function
J to be chosen later. We get the decomposition

1F = fstr + fpsd + ferr,

where fstr is (M,M)-structured, fpsd is 1/J(M)-pseudorandom, and ‖ferr‖ ≤ η with
M = MJ,η = MJ,ε.

The function fstr is the combination of at most M basic functions:

fstr =
∑

1≤k≤M

αkγAk,Bk

where Ak,Bk are subsets of V and γAk,Bk agrees with the indicator function of the
edges of G in between Ak and Bk. Any (Ak,Bk) pair partitions V into at most 4
subsets. Overall we get a partitioning of V into at most 4M subsets, we will refer to
them as atoms. Divide every atom into subsets of total vertex weight εn

L+4M
, except

possibly one smaller subset. The small subsets will be put into W0, the others give
W1,W2, . . . ,W`, with ` = L+4M

ε
. We refer to the sets Wi for i = 1, . . . ` as clusters.

If n is sufficiently large then this partitioning is non-trivial. From the construction
it follows that each Wi is entirely contained within an atom. It is also clear that
µ(W0) ≤ εn and µ(Wi) ≈ m = Θ(n

`
) for every 1 ≤ i ≤ `.

We have that

‖ferr‖2 =
1(
n
2

) ∑
(u,v)∈(V

2)

|ferr(u, v)|2ρG(u, v) ≤ η2.

From this and the normalization of ρ it follows that

1(
`
2

) ∑
1≤i<j≤`

1

ρG(Wi,Wj)

∑
u∈Wi,v∈Wj

|ferr(u, v)|2ρG(u, v) = O(η2).

Clearly,
1

ρG(Wi,Wj)

∑
u∈Wi,v∈Wj

|ferr(u, v)|2ρG(u, v) = O(η)
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for all but at most O(η`2) pairs (i, j). If the above is satisfied for a pair (i, j) then
we call it a good pair. We will apply the Cauchy-Schwarz inequality. For that let
a(u, v) = |ferr(u, v)|

√
ρG(u, v) and b(u, v) =

√
ρG(u, v), then∑

u∈Wi,v∈Wj
a(u, v)b(u, v)√∑

u∈Wi,v∈Wj
b2(u, v)

≤
√ ∑

u∈Wi,v∈Wj

a2(u, v).

Since √ ∑
u∈Wi,v∈Wj

a2(u, v) = O(
√
η)
√
ρG(Wi,Wj),

we get that
1

ρG(Wi,Wj)

∑
u∈Wi,v∈Wj

|ferr(u, v)|ρG(u, v) = O(
√
η)

if (i, j) is a good pair.
Assume that (i, j) is a good pair. From the pseudorandomness of fpsd we have that

|〈fpsd, γA,B〉| =
1(
n
2

) ∣∣∣∣∣ ∑
u∈A,v∈B

fpsd(u, v)ρG(u, v)

∣∣∣∣∣ ≤ 1

J(M)

for every A ⊂ Wi and B ⊂ Wj.

We will show that every good pair is weighted ε-regular in F relative to G. Let
(i, j) be a good pair, and assume that A ⊂ Wi, µ(A) > εµ(Wi) and B ⊂ Wj,
µ(B) > εµ(Wj). To show that (Wi,Wj) is weighted ε-regular, it is sufficient to show
that ∣∣∣∣ ρF (A,B)

µ(A)µ(B)
− ρF (Wi,Wj)

µ(Wi)µ(Wj)

∣∣∣∣ < ε.

Recall that

ρF (A,B) =
∑

u∈A,v∈B

1F (u, v)ρ(u, v) =
∑

u∈A,v∈B

1F (u, v)ρG(u, v),

since F ⊂ G.
Substituting fstr+fpsd+ferr for 1F it is sufficient to verify the following inequalities.

(1)

∣∣∣∣∣
∑

u∈A,v∈B fstr(u, v)ρG(u, v)

µ(A)µ(B)
−
∑

u∈Wi,v∈Wj
fstr(u, v)ρG(u, v)

µ(Wi)µ(Wj)

∣∣∣∣∣ < ε/3,

(2)

∣∣∣∣∣
∑

u∈A,v∈B fpsd(u, v)ρG(u, v)

µ(A)µ(B)
−
∑

u∈Wi,v∈Wj
fpsd(u, v)ρG(u, v)

µ(Wi)µ(Wj)

∣∣∣∣∣ < ε/3

and



A WEIGHTED REGULARITY LEMMA WITH APPLICATIONS 7

(3)

∣∣∣∣∣
∑

u∈A,v∈B ferr(u, v)ρG(u, v)

µ(A)µ(B)
−
∑

u∈Wi,v∈Wj
ferr(u, v)ρG(u, v)

µ(Wi)µ(Wj)

∣∣∣∣∣ < ε/3.

For proving (1) recall that fstr is constant on Wi × Wj and (M,M)-structured.
Since the γX,Y basic functions are 0, 1-valued, we get, that |fstr| ≤ M2. Moreover,
G is (K, β)-quasi-random, where 0 < β � ε. Therefore, (1) ≤ KM2β < ε/3, since
β � ε.

The proof of (2) goes as follows. The first term is∣∣∣∣
∑

u∈A,v∈B fpsd(u, v)ρG(u, v)

µ(A)µ(B)

∣∣∣∣ =

(
n

2

)
|〈fpsd, γA,B〉| ≤

(
n
2

)
J(M)µ(A)µ(B)

,

the second is∣∣∣∣∣
∑

u∈Wi,v∈Wj
fpsd(u, v)ρG(u, v)

µ(Wi)µ(Wj)

∣∣∣∣∣ =

(
n

2

)
|〈fpsd, γWi,Wj

〉| ≤
(
n
2

)
J(M)µ(Wi)µ(Wj)

.

Noting that µ(Wk) = Θ(n/`) for k ≥ 1 we get that the sum of the above terms is at
most

`2

2J(M)

(
1 +

1

ε2

)
<
ε

3
,

if J(M)� `2

ε3
.

For (3) first notice that it is upper bounded by

O(
√
η)

(
ρG(Wi,Wj)

µ(Wi)µ(Wj)
+
ρG(Wi,Wj)

µ(A)µ(B)

)
≤ O(

√
η)

ρG(Wi,Wj)

ε2µ(Wi)µ(Wj)
.

We also have that
ρG(Wi,Wj)

µ(Wi)µ(Wj)
= O(1)

by the normalization of µ and ρ and from the fact that G is quasi-random. From this
it is easy to see that if η � ε6 then (3) is at most ε/3. This finishes the proof of the
theorem. �

4. Quasi-random weightings and applications

In this section we first prove that a random graph with widely differing edge prob-
abilities is quasi-random, if none of the edge probabilities are too small. In this case
the vertex weights will all be one, but edges will have different weights. Then we
show examples where vertices have different weights. We will consider the relation of
weighted regularity and volume regularity. We define the ‘natural weighting’ of Kn,
and prove a weighted version of the Erdős-Stone theorem for this weighting. Finally,
we show how to partially control the non-exceptional set by natural weightings.
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4.1. Quasi-randomness in the G(n, pij) model. In this section we will prove that
random graphs of the G(n, pij) model are quasi-random in the strong sense with high
probability. A special case of this model is the well-known G(n, p) model for random
graphs. A Regularity Lemma for this case was first applied by Kohayakawa,  Luczak
and Rödl in [9]. They studied G(n, p) for p = c/

√
n in order to find arithmetic

progressions of length three in dense subsets of random subsets of [N ].
The G(n, pij) model was first considered by Bollobás [3]. Recently it was also

studied by Chung and Lu [5]. In this model one takes n vertices, and draws an edge
between the vertices xi and xj with probability pij, randomly and independently of
each other. Note that if pij ≡ p, then we get back the well-known G(n, p) model. It is
a straightforward application of the Chernoff bound that a random graph G ∈ G(n, p)
is quasi-random with high probability if p � 1/n. However, the case of G(n, pi,j) is
somewhat harder.

Lemma 3. Let β > 0. There exists a K = K(β) such that if G ∈ G(n, pij) and
pij ≥ K/n for every i and j, then G is weighted β-quasi-random with probability at
least 1− 2−n if n is sufficiently large.

Proof. First of all let µ ≡ 1, and let ρ(i, j) = 1/pi,j. Set K = 4800/β6. Let p0 = K/n,
and let pk = ekp0 for 1 ≤ k ≤ log n. Let A and B be a pair of disjoint sets, both of
size at least βn. We partition the pairs (u, v), where u ∈ A and v ∈ B, into O(log n)
disjoint sets H1, H2, . . . , Hl : if pk ≤ puv < pk+1 then (u, v) will belong to Hk. Let

ak = β3

10

√
e
k
Kn. We will denote |Hk| by mk.

We will prove that the following inequality holds with probability at least 1−2−3n :∣∣∣∣∣ ∑
u∈A,v∈B

Xuv

puv|A||B|
− 1

∣∣∣∣∣ < β/2,

where Xuv is a random variable which is 1 if uv ∈ E(G), otherwise it is 0. This implies
the quasi-randomness of G since there are less than 22n pairs of disjoint subsets of
V (G). Observe that ∑

u∈A,v∈B

EXuv

puv|A||B|
= 1.

Applying the large deviation inequalities A.1.11 and A.1.13 from [2], we are able
to bound the number of edges in between A and B for the edges of Hk in case mk is
sufficiently large as follows. According to A.1.11 we have that

Pr

 ∑
(u,v)∈Hk

(Xuv − EXuv) > ak

 < e
− a2k

2qkmk
+

a3k
2q2

k
m2

k ,

where
pk ≤ qk =

∑
(u,v)∈Hk

puv
mk

< pk+1.
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We estimate the exponent in case mk = n2:

− a2k
2qkmk

+
a3k

2q2km
2
k

≤ − β6

200

(√
e
2

e

)k
Kn3

emk

+
β9

2000

(√
e
3

e2

)k
eKn5

m2
k

< −3n,

where we used the definition of K. For mk being much less than n2, direct substitution
gives a useless bound. For this case we have the useful inequality

1

2
Pr

(
mk∑
i=1

Yi > ak

)
≤ Pr

(
n2∑
i=1

Yi >
ak
2

)
,

where Pr(Yi = 1−qk) = qk and Pr(Yi = −qk) = 1−qk. This implies that the exponent
is at most −3n even in case mk < n2.

Indeed, let A,B and C be the events that
∑mk

i=1 Yi > ak,
∑n2

i=1 Yi > ak/2 and∑n2

i=mk+1
Yi < −ak/2, respectively. Clearly A and C are independent, and A∩C ⊂ B.

So we have Pr(B) ≥ Pr(A ∩ C) = Pr(A)Pr(C), that is Pr(A) ≤ Pr(B)/Pr(C) <
Pr(B)/2, since by A.1.13

Pr

 n2∑
i=mk+1

Yi < −
ak
2

 < e
− a2k

8qk(n2−mk) <
1

2
.

With this we have proved that the sum of the weights of the edges of Hk will not be
much larger than their expectation with high probability.

Now we estimate the probability that the sum of the weights is much less than
their expectation. Let us use A.1.13 again directly to the sums over Hk’s:

Pr

 ∑
(u,v)∈Hk

(Xuv − EXuv) < −ak

 < e
− a2k

2qkmk .

The exponent in the inequality can be estimated very similarly as before:

− a2k
2qkmk

≤ − β6

200

(√
e
2

e

)k
Kn3

emk

< −3n,

moreover, this bound applies for an arbitrary mk.
Putting these together we have that

Pr

∣∣∣∣∣∣
∑

(u,v)∈Hk

(Xuv − EXuv)

∣∣∣∣∣∣ > ak

 < 2−3n.
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This implies that∣∣∣∣∣∣
∑

(u,v)∈Hk

Xuv − EXuv

puv|A||B|

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

(u,v)∈Hk

Xuv − EXuv

pk−1|A||B|

∣∣∣∣∣∣ ≤ ak
pk−1|A||B|

≤ β

10

(
1√
e

)k
,

where the last two inequalities hold with probability at least 1− 2−3n for a given pair
of sets A and B if n is sufficiently large. Since∣∣∣∣∣ ∑

u∈A,v∈B

Xuv

puv|A||B|

∣∣∣∣∣ =

∣∣∣∣∣∣
logn∑
k=1

∑
(u,v)∈Hk

Xuv

puv|A||B|

∣∣∣∣∣∣ ≤
logn∑
k=1

∣∣∣∣∣∣
∑

(u,v)∈Hk

Xuv

pk−1|A||B|

∣∣∣∣∣∣
and

logn∑
k=1

1

10

(
1√
e

)k
≤ 1

2
,

the claimed bound follows with high probability. �

Remark. It is very similar to prove that with high probability |
∑

i,j ρG(i, j)−
(
n
2

)
| =

o(n2), we omit the details. From this it follows that rescaling the above edge weights
by a factor of (1+o(1)) and letting µ ≡ 1 provides us β-quasi-random weights for most
graphs from G(n, pij) such that µ(V ) = n and ρG(V, V ) = 2

(
n
2

)
. That is, with high

probability we can apply the Regularity Lemma for any F ⊂ G, where G ∈ G(n, pij).

4.2. Simple examples for defining vertex and edge weights. When defining
the notion of weighted quasi-randomness and weighted regularity, we mentioned that
choosing µ ≡ 1 and ρ ≡ 1/δG gives back the old definitions of quasi-randomness and
regularity. In the previous section we saw an example when we needed different edge
weights, but µ was identically one.

Let us consider a simple example in which µ has to take more than one value. Let
G be a star on n vertices, that is, the vertex v1 is adjacent to the vertices v2, . . . , vn,
and vi has degree 1 for i ≥ 2. We let µ(v1) = 1/2 and µ(vi) = 1/(2(n − 1)) for
i ≥ 2, and choose ρG ≡ n/2. With these choices G is easily seen to be a bipartite
quasi-random, moreover, it is weighted regular.

A more sophisticated example relates weighted regularity with (C, η,D) bound-
edness, which is the basic condition in the regularity lemma of Alon et al [1]. Let
us recall that G is (C, η,D) bounded with parameters C ≥ 1, η ≥ 0 and D is a
function from V to [1, n] if for all X, Y ⊂ V , when D(X), D(Y ) ≥ ηD(V ), the
inequality ρ(X, Y )D(V ) ≤ C holds, where D(X) =

∑
x∈X D(x), and ρ(X, Y ) :=

e(X, Y )/(D(X)D(Y )), i.e. ρ is a “generalized edge density.” Then one can obtain an
ε-regular partition if η � ε.

It is easy to check that the following graph G is β-quasi-random, in fact belongs
to G(n, pi,j) with appropriate weights, but G is not (C, η,D) bounded. Let V (G) =
∪4i=1Ai, |Ai| = n/4 for i = 1, . . . , 4. All edges between A1 and A2 are present, there
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is no edge between the sets A1 ∪A2 and A3 ∪A4, while between A3 and A4 there is a
random bipartite graph with edge probability 1/

√
η. Of course, if η is small enough

compared to C then G cannot be (C, η,D) bounded.
Similarly, one can show easily that whenever a graph F is (C, η,D) bounded, then

with µ(x) = D(x) for all x ∈ V (F ) and appropriately defined edge weights F is a
dense subgraph of a graph G which is (2, η)-quasi-random. Hence, Theorem 2 can be
applied for F. We leave the details for the reader.

4.3. Natural weighting of Kn. Assume that |V | = n. Let the vertex weight function
µ : V → R+ be defined such that µ(V ) = n. We also assume that µ(v) = o(n) for
every v ∈ V, as we did earlier in the paper. Then we define the natural weighting
of the edges of Kn

1 with respect to µ as follows: we let ρ(u, v) = µ(u) · µ(v) for all
u, v ∈ V, u 6= v. Observe that

ρ(V, V ) = µ(V )µ(V )−
∑
v∈V

µ2(v) = 2

(
n

2

)
(1− o(1)).

We show that these weight functions determine a quasi-random weighting of Kn. Let
A,B ⊂ V such that A ∩B = ∅. Then

ρ(A,B)

µ(A)µ(B)
=

∑
u∈A

∑
v∈B µ(u)µ(v)

µ(A)µ(B)
=
µ(A)µ(B)

µ(A)µ(B)
= 1,

independent of the weights of A and B. Recalling the definition of quasi-randomness
it is easy to see that the natural weighting of Kn is always quasi-random.

Note, that natural weighting resembles to Definition 1, where the lower bounds on
µ(A) and µ(B) are dropped. It is closely related to the random model G(w), see e.g.
in [5]. Here w = (w1, . . . , wn) is the expected degree sequence of G(w) with vertex
set {1, 2, . . . , n}. The edges of G(w) are drawn independently, and the probability of
including the edge ij is wiwj/

∑
iwi. Of course, the model G(w) is the special case of

G(n, pij), and Lemma 3 holds without any conditions. The results in the remainder of
the paper also hold in more general weightings; for simplicity, we work out the details
for natural weighting.

Let u be an arbitrary vertex and A ⊂ V. Then the weighted degree of u into A in
the graph F ⊂ Kn is defined to be

dwF (u,A) =
∑
v∈A

1F (u, v)µ(v) = µ(NF (u,A)),

where NF (u,A) denotes the neighborhood of u in the set A. In particular the weighted
degree of u in F is

dwF (u) =
∑
v∈V

1F (u, v)µ(v) = µ(NF (u)).

1Kn can be replaced with other quasi-random graphs. Then the edge weights will be different.
You can find more about this at the end of Section 4.5.
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We also have that

ρF (A,B) =
∑
u∈A

∑
v∈B

1F (u, v)ρ(u, v) =
∑
u∈A

dwF (u,B)

and
ρF (V, V ) =

∑
u∈V

dwF (u).

We define the weighted density of a weighted ε-regular (A,B) pair to be

ρF (A,B)

µ(A)µ(B)
.

We have the following lemma.

Lemma 4. Let (A,B) be a weighted ε-regular pair relative to the natural weighting
of Kn with weighted density γ � ε. Let A′ ⊂ A contain only such vertices that have
weighted degree less than (γ − ε)µ(B) in the pair. Then µ(A′) < εµ(A).

Proof: Assume on the contrary that the set of ‘low-degree’ vertices has a large weight.
Observe that ε-regularity implies that

ρF (A′, B)

µ(A′)µ(B)
> γ − ε

if µ(A′) > εµ(A). Using our assumption we get the following:

γ − ε < ρF (A′, B)

µ(A′)µ(B)
=

∑
u∈A′ µ(u)dwF (u,B)

µ(A′)µ(B)
<

∑
u∈A′ µ(u)(γ − ε)µ(B)

µ(A′)µ(B)
= γ − ε,

which is clearly a contradiction. �

Let A,B1, B2, . . . , Bk be disjoint subsets of V (F ), and assume that (A,Bi) is a
weighted ε-regular pair relative to a natural weighting of Kn with weighted density
at least γ for every i. Set δ = γ − ε. Let 0 < s be an integer constant, and assume
that δs � ε.

Lemma 5. Assume that A′ ⊂ A with µ(A′) > 2kεµ(A). Then there exist vertices
u1, u2, . . . , us ∈ A′ such that

µ(∩1≤i≤sNF (ui, Bj)) ≥ δsµ(Bj)

for every 1 ≤ j ≤ k.

Proof: We find the ui vertices one by one. For u1 we have that the weight of vertices
of A with weighted degree at most δµ(B1) is at most εµ(A) using Lemma 4. Discard
these low-degree vertices from A′, then use the regularity condition again, this time
for B2. We find that the weight of vertices having small degree into B1 or B2 is at
most 2εµ(A). Iterating this procedure we get that the weight of vertices that do not
have large degree into at least one Bi set is at most kεµ(A) < µ(A′). Pick any of the
large degree vertices from A′, this is our choice for u1.
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Next we repeat the process for finding u2, with the difference that we look for a ver-
tex that have large degree into the sets NF (u1, Bj) for every j. Since µ(NF (u1, Bj)) ≥
δµ(Bj) � εµ(Bj), the same procedure will work. Applying Lemma 4 we can find
many vertices in A′ − u1 such that the weighted degree of all of them into Bj is at
least δµ(NF (u1, Bj)) ≥ δ2µ(Bj) for every j. Pick any of these, this vertex is u2.

When it comes to finding ui we will work with the sets A′ − {u1, . . . , ui−1} and
∩t≤i−1NF (ut, Bj) for 1 ≤ j ≤ k. Using induction it is easy to show that

µ(∩t≤i−1NF (ut, Bj)) ≥ δi−1µ(Bj)

for every j. Since δs � ε, we can iterate this procedure until we find all the vertices
u1, . . . , us. �

Assume now that there are q clusters, W1,W2, . . . ,Wq ⊂ V (F ) such that µ(Wi) =
m + o(m) for all i (here m � εn) and all the (Wi,Wj) pairs are weighted ε-regular
relative to a natural weighting of Kn with density at least γ. That is, we have a
super-clique Clq on q clusters.

Next we construct the graph Ks
q , a blown-up clique as follows. First, we have q

disjoint s-element set of vertices, this is the vertex set of Ks
q . Then we connect any

two vertices if they belong to different vertex sets. Before we state an embedding
result, we need a simple lemma, the proof is left for the reader.

Lemma 6. Let (A,B) be a weighted ε-regular pair with density d, and for some α
let A′ ⊂ A with µ(A′) ≥ αµ(A) and B′ ⊂ B with µ(B′) ≥ αµ(B). Then (A′, B′) is a
weighted ε′-regular pair with ε′ = max{ε/α, 2ε} and density d′ ≥ d− ε.

We have the following embedding lemma:

Lemma 7. Let δ = γ − 2ε. If δqs � ε then Ks
q ⊂ Clq.

Proof: First, apply Lemma 5 with A = W1 and Bj = Wj+1 for 1 ≤ j ≤ q − 1. We
find the the vertices u11, u

1
2, . . . , u

1
s ∈ W1 such that

µ(∩1≤i≤sNF (u1i ,Wj)) ≥ δsµ(Wj).

Let W 2
j = ∩i≥1NF (u1i ,Wj), then µ(W 2

j ) ≥ δsµ(Wj)� εµ(Wj) for every j ≥ 2.

Next let A = W 2
2 and Bj = W 2

j+2 for 1 ≤ j ≤ q − 2. Using Lemma 6 we have that
the new (A,Bj) pairs are all weighted ε/δs-regular with density at least γ− ε. Hence,
we can apply Lemma 5 again, and find u21, u

2
2, . . . , u

2
s ∈ W 2

2 such that

µ(∩1≤i≤sNF (u2i ,W
2
j )) ≥ δsµ(W 2

j ) ≥ δ2sµ(Wj)� εµ(Wj)

for 3 ≤ j ≤ q.
Continuing this process, in the kth step we will work with the W k

j sets when apply-

ing Lemma 5. These sets are defined recursively as follows: W k
j = ∩i≥1NF (uk−1i ,W k−1

j )

and µ(W k
j ) ≥ δ(k−1)sµ(Wj) for every k + 1 ≤ j ≤ q. Moreover, the (W k

k ,W
k
j ) pairs

will be ε/δ(k−1)s-regular with density at least γ − ε for every k + 1 ≤ j ≤ q.
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In the last step, when k = q − 1, there are only two sub-clusters left, W q−1
q−1 and

W q−1
q . The pair (W q−1

q−1 ,W
q−1
q ) will be weighted ε/δ(q−2)s-regular with density at least

γ − ε. It is easy to find a Ks,s (a complete bipartite graph) in this regular pair using
Lemma 5. Clearly, we constructed the desired Ks

q graph. �

4.4. Illustration: a weighted version of the Erdős-Stone theorem. Let tq−1(n)
be the number of edges in the Turán graph Tn,q−1 on n vertices. That is, Tn,q−1 has
the largest number of edges such that it does not contain a Kq. It is well known that

lim
n→∞

tq−1(n)(
n
2

) =
q − 2

q − 1
.

The Erdős-Stone theorem states that if one has at least tq−1(n) +γn2 edges (where
γ > 0 is a constant) in a graph F on n vertices then F has a Ks

q for any given
natural number s. In this section we show a weighted version. We take a natural
weighting of Kn, and prove that if the total edge weight in F ⊂ Kn is large then F
has a large blown-up clique. We remark that there are other results in the literature
on the extremal theory of weighted graphs, see e.g. [4] by Bondy and Tuza and [7]
by Füredi and Kündgen, although the setup of these papers is different from ours.
Another version of the Erdős-Stone theorem for sparse graphs can be found in [6].

Theorem 8. For all integers q ≥ 2 and s ≥ 1 and every γ > 0 there exists an integer
n0 such that the following holds. Take the natural weighting of Kn with vertex weight
function µ and assume that µ(V ) = n ≥ n0. Let F ⊂ Kn. If the total edge weight of
F is at least tq−1(n) + γn2 then F contains Ks

q as a subgraph.

Proof: We begin with applying the weighted Regularity Lemma with parameters
ε� min{(γ−ε)qs, 1/s, 1/q} and L� 1/ε. We get an ε-regular partition with clusters
W0,W1, . . . ,W`. Let us construct the reduced graph Fr as follows. The vertices of Fr
are identified by the ` non-exceptional clusters. We have an edge between two vertices
of Fr if the corresponding two clusters give an ε-regular pair with density at least γ.
Hence, when we construct Fr we lose edges of F as follows: (1) edges that are incident
with some vertex of W0, (2) edges that connect two vertices that belong to the same
non-exceptional cluster, (3) edges that are in some irregular pair, (4) edges that are
in regular pairs with small density.

The outline of the proof is as follows. We will show that the loss in edge weight is
small, hence, Fr will have many edges. By Turán’s Theorem we will have a q-clique
in Fr. Then we apply Lemma 7, and conclude the existence of a Ks

q in F.
(1) The total weight of edges that are incident with some vertex of W0 can be

estimated as follows:

ρF (W0, V ) ≤ ρ(W0, V ) =
∑
w∈W0

∑
v∈V

ρ(w, v) ≤ µ(W0)µ(V ) ≤ εn2.
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(2) The non-exceptional clusters have weight (n−εn)(1+o(1))/`. The total weight
of edges inside non-exceptional clusters is at most

1

2

∑
1≤i≤`

∑
u∈Wi

∑
v∈Wi−u

ρ(u, v) =
1

2

∑
1≤i≤`

∑
u∈Wi

∑
v∈Wi−u

µ(u)µ(v) ≤

1

2

∑
1≤i≤`

µ(Wi)
2 =

n2

`
(1 + o(1)).

Since ` ≥ L� 1/ε, we have that the total edge weight inside non-exceptional clusters
is less than εn2.

(3) Assume that (Wi,Wj) is an irregular pair. Then

ρF (Wi,Wj) ≤
∑
u∈Wi

∑
v∈Wj

ρ(u, v) =
∑
u∈Wi

∑
v∈Wj

µ(u)µ(v) = µ(Wi)µ(Wj) =
n2

`2
(1 + o(1)).

Since the number of irregular pairs is at most ε`2, we get that the total edge weight
in irregular pairs is at most

ε`2
n2

`2
(1 + o(1)) < 2εn2.

(4) If the density of an ε-regular pair (Wi,Wj) is small then we have the following
inequality:

ρF (Wi,Wj) ≤ µ(Wi)µ(Wj)γ =
n2

`2
(1 + o(1))γ.

Since there can be at most
(
`
2

)
pairs, the total edge weight in low density pairs is less

than 2γn2/3.
Putting together, we get that the total weight of edges that we lose when applying

the weighted Regularity Lemma is at most (4ε+ 2γ/3)n2 < 3γn2/4. Hence, the total
edge weight in the high-density regular pairs of Fr is at least tq−1(n)+γn2/4. The total

weight of edges in a regular pair is (1 + o(1))n2/`2. Assume that e(Fr) ≤ q−2
q−1

`2

2
, then

the total edge weight would be at most q−2
q−1

n2

2
(1 + o(1)). Since we have a larger edge

weight in what is left after applying the Regularity Lemma, using Turán’s theorem
we get that Fr contains a Kq. Every pair in this clique is a high-density ε-regular
pair, hence, we can apply Lemma 7 and find the blown-up clique. �

Remarks. One can arrive at the same conclusion perturbing the edge weights a
little. Let K > 1 be a fixed constant. Multiply the weight of the edge e by any
number ce ∈ [1/K,K]. The resulting weighted graph will be quasi-random, and it is
an easy exercise to show that one still have Theorem 8.

One can also show the weighted version of the Erdős-Stone-Simonovits theorem,
a stability version of the above. Let H be a family of forbidden subgraphs having
chromatic number q. Assume that the total edge weight in F is close to tq−1(n), but
F does not contain some graph H ∈ H. Then Fr, the reduced graph cannot have a
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clique on q vertices, but the number of edges in it will be close to tq−1(`). This implies
that Fr is close to a Turán graph T`,q−1, and that in turn implies that the vertex set of
F can be partitioned into q−1 disjoint vertex classes in the following way: the vertex
classes all have weight ≈ n/(q − 1), the total weight of edges inside vertex classes is
very small, and the weighted density of edges for every pair of disjoint classes is close
to one.

4.5. Emphasized sets. One cannot avoid to have an exceptional cluster W0 when
applying the Regularity Lemma. That is, a linear number of vertices could be dis-
carded in certain cases, a well-known example is the so called half-graph. In general
we don’t have a control on what is put into the exceptional cluster. However, using
vertex weights one can at least partly control the set of discarded vertices. In what
follows we show how to use the natural weighting of Kn in order to have that the
majority of some given emphasized set is put into non-exceptional clusters after ap-
plying the weighted Regularity Lemma, even if the set is of size o(n). In fact we will
do it for several emphasized sets at the same time. Notice that applying the usual
regularity concept (even that of [1]) one may discard all vertices with small degrees.

Assume that k is a fixed constant, V is partitioned into the disjoint sets S1, S2, . . . , Sk,
and let n = |V |. Further assume that si → ∞ as n → ∞. Let si = |Si| for every i.
Define the following weighting of the vertices of V : for v ∈ Si we let

µ(v) = µi =
n

ksi
.

Observe that ∑
v∈Si

µ(v) =
n

k
,

thus, the total weight of the vertices is n. Let v ∈ Si and w ∈ Sj. The weight of the
pair (v, w) is

ρ(v, w) = ρij = µ(v)µ(w) =
n2

k2sisj
.

We showed above that Kn equipped with such vertex and edge weights is a quasi-
random graph. We call this particular weighting the natural weighting of Kn with
emphasized sets S1, S2, . . . , Sk.

We can apply Theorem 2 for some F relative to the natural weighting of Kn. Choose
ε so that k � 1/ε. Since µ(W0) ≤ εn� n/k, we get that for all i the majority of the
vertices of Si are in non-exceptional clusters.

We remark that it is possible to define vertex weights not only for G = Kn, but
for much sparser quasi-random graphs when emphasizing subsets of V. For example,
assume that G ∈ G(n, pij), and V is partitioned into the disjoint sets S1, S2, . . . , Sk.
Then one will have the vertex weights of the above example, but the edge weights
will be different:

ρ(vi, vj) = µ(vi)µ(vj)
1

pij
=

n2

k2sqstpij
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whenever vi ∈ Sq and vj ∈ St. We leave the details for the reader.
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